Chemistry and Biochemistry, the College of Science and the Office of Research Development and Administration of SIUC.

References

BEURSKENS, P. T. (1984). DIRDIF. An automatic procedure for phase extension and refinement of difference structure factors. Tech. Rep. 1984/1. Univ. of Nijmegen, The Netherlands.

Acta Cryst. (1991). C47, 1401-1403

A BF₂-Bridged Cobalt Dimethylglyoxime Complex

BY KIM A. LANCE, WANG-KAN LIN AND DARYLE H. BUSCH*

Chemistry Department, The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210, USA

AND NATHANIEL W. ALCOCK*

Department of Chemistry, University of Warwick, Coventry CV4 7AL, England

(Received 5 October 1990; accepted 8 January 1991)

Abstract. (Acetonitrile)chloro(2,2,9,9-tetrafluoro-5,-6,12,13-tetramethyl-1,3,8,10-tetraoxa-4,7,11,14-tetraaza-1,8-diboracyclotetradeca-4,6,11,13-tetraene-

Introduction. The use of substituted cobalt glyoxime complexes as dioxygen carriers is handicapped by their rapid autoxidation. It has been shown (Lance, Goldsby & Busch, 1991) that the replacement of the bridging H⁺ atoms in the O···H···O units by BF₂⁺ groups leads to a dramatic reduction in the decomposition rate. We now report the X-ray structure of the parent dimethylglyoxime complex containing BF₂⁺ groups (I).

Experimental. The complex was prepared as described in Lance *et al.* (1991). Red platy crystals were obtained from acetonitrile/ether. Data were

0108-2701/91/071401-03\$03.00

© 1991 International Union of Crystallography

HINCKLEY, C. C., ALI, I. A. & ROBINSON, P. D. (1990). Acta Cryst. C46, 697–699.

GILMORE, C. J. (1984). J. Appl. Cryst. 17, 42-46.

- HINCKLEY, C. C., IKUO, A. & ROBINSON, P. D. (1988). Acta Cryst. C44, 1827–1829.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
- ROBINSON, P. D., HINCKLEY, C. C. & IKUO, A. (1988). Acta Cryst. C44, 1491-1492.

collected with a Nicolet $P2_1$ four-circle diffractom-

eter in the ω -2 θ mode. Maximum 2 θ was 55° with

scan range $\pm 1.0^{\circ}$ (2 θ) around the $K\alpha_1$ - $K\alpha_2$ angles, scan speed 2-24° min⁻¹, depending on the intensity

of a 2 s pre-scan; backgrounds were measured at each end of the scan for 0.5 of the scan time. *hkl*

Six standard reflections were monitored every 100

reflections, and showed only random fluctuations

during data collection. Unit-cell dimensions and

standard deviations were obtained by a least-squares

fit of 15 reflections ($15 < 2\theta < 25^{\circ}$). Reflections were

processed to give 2321 unique reflections, of which

2062 were considered observed $[I/\sigma(I) \ge 3.0]$. These

ranges were: 0/12, 0/17, 0/17.

^{*} Authors to correspondence should be addressed.

Table 1. Atomic coordinates for Co(Me₂GlvoxBF₂)₂(MeCN)Cl

Table 2. Bond lengths (Å) and angles (°) for Co(Me₂GlyoxBF₂)₂(MeCN)Cl

$B_{\rm eq} = 8\pi^2 (U_{11} + U_{22} + U_{33})/3.$					
	x	у	Z	$B_{eq}(\text{\AA}^2)$	
Co	0.33879 (5)	0.23381 (4)	0.24394 (3)	1.91 (2)	
Cl	0.32499 (13)	0.09404 (8)	0.32748 (8)	3.39 (5)	
N1	0.5282 (3)	0.2417 (2)	0.2569 (3)	2.42 (12)	
N2	0.1498 (3)	0.2283 (2)	0.2294 (2)	2.34 (12)	
N3	0.3465 (4)	0.3032 (2)	0.3646 (2)	2.33 (13)	
N4	0.3328 (4)	0.1654 (3)	0.1228 (2)	2.41 (13)	
N5	0.3450 (4)	0.3558 (2)	0.1741 (2)	2.41 (13)	
01	0.2345 (3)	0.3230 (3)	0.4192 (2)	3.07 (13)	
O2	0.0621 (3)	0.2598 (3)	0.2999 (2)	3.06 (13)	
O3	0.4427 (3)	0.1479 (3)	0.0666 (2)	3.23 (13)	
O4	0.6146 (3)	0.2153 (3)	0.1841 (2)	3.40 (14)	
F1	0.6666 (3)	0.1288(3)	0.0454 (2)	5.49 (16)	
F2	0.5682 (3)	0.0461 (2)	0.1717(2)	4.94 (15)	
F3	0.1269 (3)	0.4268 (2)	0.3041 (2)	4.23 (13)	
F4	0.0109 (3)	0.3567 (3)	0.4317 (2)	4.84 (14)	
B1	0.5743 (5)	0.1313 (5)	0.1189 (4)	3.46 (24)	
B2	0.1088 (5)	0.3445 (5)	0.3609 (4)	3.31 (23)	
C1	0-1887 (5)	0.0991 (4)	-0.0097 (3)	4.06 (23)	
C2	0.2140 (5)	0.1483 (4)	0.0874 (3)	2.87 (18)	
C3	0.1052 (4)	0.1832 (3)	0.1529 (3)	2.52 (17)	
C4	-0.0408 (5)	0.1670 (4)	0.1310 (4)	3.96 (23)	
C5	0.4908 (5)	0.3749 (4)	0.4945 (3)	3.53 (20)	
C6	0.4632 (4)	0.3244 (3)	0-3978 (3)	2.36 (17)	
C7	0.5718 (4)	0.2923 (3)	0.3309 (3)	2.59 (17)	
C8	0.7164 (4)	0.3202 (4)	0.3459 (4)	4.08 (24)	
C9	0.3394 (5)	0.4332 (3)	0.1429 (3)	2.69 (16)	
C10	0.3292 (6)	0.5321 (3)	0.1036 (4)	4.36 (23)	

Fig. 1. (a) Face-on and (b) side-on views of the molecule, with 50% thermal ellipsoids.

Cl—Co	2.202 (1)	B2—O1	1.504 (6)
N1—Co	1.889 (3)	B2—O2	1.484 (6)
N2—Co	1.885 (3)	B1O3	1.501 (6)
N3-Co	1.884 (3)	B104	1.491 (6)
N4-Co	1.882 (3)	BI-FI	1.352 (6)
N5-Co	1.898 (3)	B1—F2	1.354 (7)
04—N1	1.353 (4)	B2—F3	1.362 (7)
C7-N1	1.286 (5)	B2—F4	1.374 (6)
02-N2	1.358 (4)	C2-C1	1.494 (6)
C3—N2	1.279 (5)	$\overline{C3}$ $-C2$	1.473 (6)
01—N3	1.359 (4)	C4-C3	1.494 (6)
C6-N3	1.274(5)	<u> </u>	1.501 (5)
03—N4	1.349(4)	C7-C6	1.471 (6)
C2—N4	1.293 (6)	C8-C7	1.496 (6)
C9-N5	1.127 (5)		1.439 (6)
0, 10	1 127 (3)		1 439 (0)
N1-Co-C1	93·6 (1)	B2-01-N3	115.4 (3)
N2-Co-Cl	87.6 (1)	B2-02-N2	115.6 (3)
N2-Co-N1	178.8 (1)	B1-03-N4	117.5 (3)
N3-Co-C1	89.0 (1)	B1-04-N1	117.5 (3)
N3-Co-N1	81.4 (1)	O4—B1—O3	113.5 (4)
N3—Co—N2	98·6 (1)	F1-B1-O3	104.2 (4)
N4-Co-C1	91·5 (1)	F1—B1—O4	105·9 (4)
N4—Co—N1	98 ·0 (1)	F2-B1-O3	109.6 (4)
N4-Co-N2	81.9 (1)	F2—B1—O4	110.2 (4)
N4—Co—N3	179.3 (2)	F2—B1—F1	113-4 (4)
N5-Co-C1	178.0 (1)	O2—B2—O1	113.7 (4)
N5-Co-N1	88.0 (2)	F3—B2—O1	110.1 (4)
N5-Co-N2	90.8 (1)	F3—B2—O2	110.8 (4)
N5-Co-N3	90.0 (1)	F4-B2-O1	104.0 (4)
N5CoN4	89·5 (1)	F4—B2—O2	105-1 (4)
O4—N1—Co	123.1 (2)	F4—B2—F3	112.9 (4)
C7—N1—Co	115.9 (3)	C1-C2-N4	123-9 (4)
C7—N1—O4	119.6 (3)	C3—C2—N4	112.8 (4)
O2—N2—Co	123.4 (2)	C3-C2-C1	123-3 (4)
C3—N2—Co	116.5 (3)	C2-C3-N2	112.7 (4)
C3—N2—O2	119.7 (3)	C4-C3-N2	124-4 (4)
01—N3—Co	122.4 (2)	C4-C3-C2	122.9 (4)
C6—N3—Co	117.0 (3)	C5-C6-N3	125-1 (4)
C6-N3-01	120.4 (3)	C7-C6-N3	112.5 (3)
O3-N4-Co	123.5 (3)	C7C6C5	122.4 (4)
C2—N4—Co	116.0 (3)	C6C7NI	112.9 (3)
C2-N4-O3	119.7 (3)	C8C7N1	124-1 (4)
C9N5Co	170.9 (3)	C8—C7—C6	122-9 (4)
C10-C9-N5	178.8 (5)		

were corrected for Lorentz, polarization and absorption effects (by the Gaussian method); minimum and maximum transmission factors were 0.86 and 0.91. Crystal dimensions were $0.18 \times 0.31 \times 0.45$ mm. Systematic reflection conditions: h00, h = 2n; 0k0, k= 2n; 00l, l = 2n indicate space group $P2_12_12_1$. The Co atom was located by Patterson methods and the light atoms were then found on successive Fourier syntheses. Anisotropic temperature factors were used for all non-H atoms. Methyl atoms were given fixed isotropic temperature factors, $U = 0.07 \text{ Å}^2$, and were treated as rigid CH₃ units, with their initial orientation taken from the strongest H-atom peaks on a difference Fourier synthesis. The absolute structure of the individual crystal chosen was not determined. Final refinement was on F by least-squares methods refining parameters. Largest positive and negative peaks on a final difference Fourier synthesis were of height ± 0.4 e Å⁻³. A weighting scheme of the form $w = 1/[\sigma^2(F)]$ was used and shown to be satisfactory by a weight analysis. Final R = 0.031, wR = 0.036. Maximum shift/e.s.d. in final cycle 0.03. Computing with SHELX76 (Sheldrick, 1976). Scattering factors in the analytical form and anomalous-dispersion factors taken from International Tables for X-ray Crystallography (1974, Vol. IV). Final atomic coordinates are given in Table 1, and bond lengths and angles in Table 2.* Views of the molecule are shown in Fig. 1.

Discussion. The complex is seen to contain octahedrally coordinated Co^{III}, with axial Cl⁻ and MeCN ligands. Apart from these ligands, the molecule is planar, with the BF₂ groups disposed above and below the plane. For application of similar molecules in oxygen binding, the planarity is advantageous in that oxidizable organic fragments are removed from the oxygen coordination site; however, it has been found that protection, both of this coordination site and of the *trans*-position occupied by the axial base, is important for stability in oxygen adducts.

A number of Co^{III} glyoxime complexes have previously been examined structurally, most of which

contain neutral axial donors (NH₃, pyridine, pyrrolidine, etc.). For comparison with the present structure, the trans-azido pyridine complex is the most appropriate (Clearfield, Gopal, Kline, Sipski & Urban, 1978; Ponnuswamy & Trotter, 1983), as it contains one anionic and one neutral ligand. The two molecules have closely similar dimensions, though the Co-N distance is slightly shorter in the present 1.885 (3) Å, example mean compared to 1.903 (4) Å]; the distance to N of the acetonitrile ligand is hardly longer [1.898 (3) Å]. The Co-N(pyridine) distance in the pyridine complex is significantly longer [1.973 (5) Å], perhaps reflecting the trans-influence of the N₃ ligand. The displacement of the B atoms from the coordination plane has allowed the non-bonded O···O distances [2.500 (4) Å] to remain almost identical to the O-H-O distances in the *trans*-azido pyridine complex [2.483 (6); 2.500 (6) Å].

References

- CLEARFIELD, A., GOPAL, R., KLINE, R. J., SIPSKI, M. L. & URBAN, L. O. (1978). J. Coord. Chem. 8, 5–13.
- LANCE, K. A., GOLDSBY, K. A. & BUSCH, D. H. (1991). Inorg. Chem. In the press.
- PONNUSWAMY, M. & TROTTER, J. (1983). Acta Cryst. C39, 726–728.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 1403-1406

Di(hexahydropyridazido)thiophosphorsäure-O-phenylester als zweizähniger S,N-Ligand in einem dimeren Cadmium(II)-Komplex

VON CHRISTINE RENZ-KREIKEBOHM, BRIGITTE STROMBURG UND UDO ENGELHARDT

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstr. 34-36, D-1000 Berlin 33, Deutschland

(Eingegangen am 16. Juli 1990; angenommen am 2. Januar 1991)

Abstract. Di- μ -chloro-bis{chloro[O-phenyl di(hexahydropyridazido)thiophosphate-S,N]cadmium(II)}, [Cd₂Cl₄(C₁₄H₂₃N₄OPS)₂], $M_r = 1019.42$, triclinic, $P\overline{1}$, a = 9.150 (3), b = 10.356 (4), c = 11.506 (6) Å, $\alpha =$ 87.24 (3), $\beta = 86.12$ (4), $\gamma = 67.94$ (3)°, V =1008 (2) Å³, Z = 1, $D_x = 1.679$ Mg m⁻³, λ (Mo K α) = 0.71069 Å, $\mu = 15.36$ mm⁻¹, F(000) = 512, T =293 K, R = 0.037 for 3343 unique contributing reflections. The complex has been prepared in an ethanolic solution by the reaction of bis(hexahydropyridazido)thiophosphoric acid O-phenyl ester and CdCl₂.H₂O in a 1:1 molar ratio. The asymmetric unit is formed by one half of the centrosymmetric dimer.

0108-2701/91/071403-04\$03.00

The bidentate ligands coordinate through S and one of the terminal pyridazido N atoms. Cd is at the centre of a tetragonal pyramid formed by N, S, one terminal Cl and two Cl bridges to the other Cd. Bond distances: Cd—S 2.661(1), Cd—N 2.397(5), Cd—Cl (terminal) 2.387(2), Cd—Cl (bridge) 2.565(2) and 2.644(2), P—S 1.960(2), P—N 1.650(5) and 1.643(4), N—N 1.437(6) and 1.433(6) Å.

Einleitung. Dihydrazidothiophosphorsäure-Derivate sollten potentiell als dreizähnige Chelatliganden fungieren können (Engelhardt & Scherer, 1976; © 1991 International Union of Crystallography

^{*} Lists of anisotropic thermal parameters, H-atom coordinates and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53911 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.