Chemistry and Biochemistry, the College of Science and the Office of Research Development and Administration of SIUC.

References

Beurskens, P. T. (1984). DIRDIF. An automatic procedure for phase extension and refinement of difference structure factors. Tech. Rep. 1984/1. Univ. of Nijmegen, The Netherlands.

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Hinckley, C. C., Ali, I. A. \& Robinson, P. D. (1990). Acta Cryst. C46, 697-699.
Hinckley, C. C., Ikuo, A. \& Robinson, P. D. (1988). Acta Cryst. C44, 1827-1829.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Robinson, P. D., Hinckley, C. C. \& Ikuo, A. (1988). Acta Cryst. C44, 1491-1492.

Acta Cryst. (1991). C47, 1401-1403

A BF $\mathbf{2}_{2}$-Bridged Cobalt Dimethylglyoxime Complex

By Kim A. Lance, Wang-Kan Lin and Daryle H. Busch*
Chemistry Department, The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210, USA
and Nathaniel W. Alcock*
Department of Chemistry, University of Warwick, Coventry CV4 7AL, England

(Received 5 October 1990; accepted 8 January 1991)

Abstract

Acetonitrile)chloro(2,2,9,9-tetrafluoro-5,-6,12,13-tetramethyl-1,3,8,10-tetraoxa-4,7,11,14-tetra-aza-1,8-diboracyclotetradeca-4,6,11,13-tetraene- $\kappa^{4} N$)cobalt(III), $\left[\mathrm{CoCl}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]$, $M_{r}=461 \cdot 3$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=9.912$ (1), b $=13.485$ (1), $c=13 \cdot 534$ (1) $\AA, V=1809 \AA^{3}, Z=4$, $D_{x}=1.69, \quad D_{m} \quad$ (flotation) $=1.67 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu($ Mo $K \alpha)=11.5 \mathrm{~cm}^{-1}, F$ $=928, \quad T=292 \mathrm{~K}, \quad R=0.031$ for 2062 unique observed $[I / \sigma(I) \geq 3.0]$ reflections. The molecule contains octahedrally coordinated $\mathrm{Co}^{1 \mathrm{II}}$ with axial Cl and MeCN ; Co-N(dimethylglyoxime) 1.885 (3), $\mathrm{Co}-\mathrm{N}(\mathrm{MeCN}) 1.898$ (3), $\mathrm{Co}-\mathrm{Cl} 2 \cdot 202$ (1) \AA. The BF_{2} groups are displaced from the equatorial coordination plane, alternately up and down.

Introduction. The use of substituted cobalt glyoxime complexes as dioxygen carriers is handicapped by their rapid autoxidation. It has been shown (Lance, Goldsby \& Busch, 1991) that the replacement of the bridging H^{+}atoms in the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ units by BF_{2}^{+} groups leads to a dramatic reduction in the decomposition rate. We now report the X-ray structure of the parent dimethylglyoxime complex containing BF_{2}^{+}groups (I).

Experimental. The complex was prepared as described in Lance et al. (1991). Red platy crystals were obtained from acetonitrile/ether. Data were

[^0]0108-2701/91/071401-03\$03.00
collected with a Nicolet $P 2_{1}$ four-circle diffractometer in the $\omega-2 \theta$ mode. Maximum 2θ was 55° with scan range $\pm 1 \cdot 0^{\circ}(2 \theta)$ around the $K \alpha_{1}-K \alpha_{2}$ angles, scan speed $2-24^{\circ} \mathrm{min}^{-1}$, depending on the intensity of a 2 s pre-scan; backgrounds were measured at each end of the scan for 0.5 of the scan time. hkl ranges were: $0 / 12,0 / 17,0 / 17$.

Six standard reflections were monitored every 100 reflections, and showed only random fluctuations during data collection. Unit-cell dimensions and standard deviations were obtained by a least-squares fit of 15 reflections ($15<2 \theta<25^{\circ}$). Reflections were processed to give 2321 unique reflections, of which 2062 were considered observed [$/ / \sigma(I) \geq 3 \cdot 0$]. These

(I)
© 1991 International Union of Crystallography
Table 1. Atomic coordinates for $\mathrm{Co}\left(\mathrm{Me}_{2} \text { Glyox }^{2} \mathrm{~F}_{2}\right)_{2}(\mathrm{MeCN}) \mathrm{Cl}$

$B_{\text {eq }}=8 \pi^{2}\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Co	0.33879 (5)	0.23381 (4)	$0 \cdot 24394$ (3)	1.91 (2)
Cl	0.32499 (13)	0.09404 (8)	$0 \cdot 32748$ (8)	$3 \cdot 39$ (5)
N1	0.5282 (3)	0.2417 (2)	0.2569 (3)	2.42 (12)
N2	0.1498 (3)	$0 \cdot 2283$ (2)	$0 \cdot 2294$ (2)	2.34 (12)
N3	0.3465 (4)	$0 \cdot 3032$ (2)	$0 \cdot 3646$ (2)	$2 \cdot 33$ (13)
N4	0.3328 (4)	$0 \cdot 1654$ (3)	$0 \cdot 1228$ (2)	2.41 (13)
N5	$0 \cdot 3450$ (4)	0.3558 (2)	$0 \cdot 1741$ (2)	2.41 (13)
O1	0.2345 (3)	0.3230 (3)	0.4192 (2)	3.07 (13)
O2	0.0621 (3)	0.2598 (3)	0.2999 (2)	3.06 (13)
O3	0.4427 (3)	$0 \cdot 1479$ (3)	0.0666 (2)	$3 \cdot 23$ (13)
O4	0.6146 (3)	0.2153 (3)	0.1841 (2)	3.40 (14)
F1	0.6666 (3)	$0 \cdot 1288$ (3)	0.0454 (2)	5.49 (16)
F2	0.5682 (3)	0.0461 (2)	$0 \cdot 1717$ (2)	4.94 (15)
F3	$0 \cdot 1269$ (3)	0.4268 (2)	0.3041 (2)	$4 \cdot 23$ (13)
F4	0.0109 (3)	0.3567 (3)	0.4317 (2)	4.84 (14)
B1	0.5743 (5)	$0 \cdot 1313$ (5)	$0 \cdot 1189$ (4)	$3 \cdot 46$ (24)
B2	$0 \cdot 1088$ (5)	0.3445 (5)	0.3609 (4)	3.31 (23)
C1	$0 \cdot 1887$ (5)	0.0991 (4)	-0.0097 (3)	4.06 (23)
C2	0.2140 (5)	$0 \cdot 1483$ (4)	0.0874 (3)	$2 \cdot 87$ (18)
C3	$0 \cdot 1052$ (4)	$0 \cdot 1832$ (3)	$0 \cdot 1529$ (3)	$2 \cdot 52$ (17)
C4	-0.0408 (5)	$0 \cdot 1670$ (4)	$0 \cdot 1310$ (4)	3.96 (23)
C5	0.4908 (5)	0.3749 (4)	0.4945 (3)	$3 \cdot 53$ (20)
C6	0.4632 (4)	0.3244 (3)	$0 \cdot 3978$ (3)	$2 \cdot 36$ (17)
C7	0.5718 (4)	0.2923 (3)	0.3309 (3)	$2 \cdot 59$ (17)
C8	0.7164 (4)	0.3202 (4)	0.3459 (4)	4.08 (24)
C9	0.3394 (5)	0.4332 (3)	0.1429 (3)	2.69 (16)
Cl 0	$0 \cdot 3292$ (6)	0.5321 (3)	$0 \cdot 1036$ (4)	$4 \cdot 36$ (23)

Fig. 1. (a) Face-on and (b) side-on views of the molecule, with 50% thermal ellipsoids.

Table 2. Bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathrm{Co}\left(\mathrm{Me}_{2} \mathrm{GlyoxBF}_{2}\right)_{2}(\mathrm{MeCN}) \mathrm{Cl}$

$\mathrm{Cl}-\mathrm{Co}$	$2 \cdot 202$ (1)	B2-O1	$1 \cdot 504$ (6)
N1-Co	1.889 (3)	$\mathrm{B} 2-\mathrm{O} 2$	1.484 (6)
N2-Co	1.885 (3)	$\mathrm{Bl}-\mathrm{O} 3$	1.501 (6)
N3-Co	1.884 (3)	$\mathrm{Bl}-\mathrm{O} 4$	1.491 (6)
N4-Co	1.882 (3)	$\mathrm{Bl}-\mathrm{F} 1$	$1 \cdot 352$ (6)
N5-Co	1.898 (3)	$\mathrm{B} 1-\mathrm{F} 2$	1.354 (7)
O4-N1	1.353 (4)	B2-F3	1.362 (7)
C7-N1	$1 \cdot 286$ (5)	B2-F4	1.374 (6)
$\mathrm{O} 2-\mathrm{N} 2$	1.358 (4)	$\mathrm{C} 2-\mathrm{Cl}$	1.494 (6)
$\mathrm{C} 3-\mathrm{N} 2$	$1 \cdot 279$ (5)	C3-C2	1.473 (6)
$\mathrm{Ol}-\mathrm{N} 3$	1.359 (4)	C4-C3	1.494 (6)
C6-N3	$1 \cdot 274$ (5)	C6-C5	1.501 (5)
$\mathrm{O} 3-\mathrm{N} 4$	1.349 (4)	C7-C6	1.471 (6)
$\mathrm{C} 2-\mathrm{N} 4$	$1 \cdot 293$ (6)	C8-C7	1.496 (6)
C9-N5	$1 \cdot 127$ (5)	C10-C9	1.439 (6)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{Cl}$	93.6 (1)	$\mathrm{B} 2-\mathrm{O} 1-\mathrm{N} 3$	115.4 (3)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{Cl}$	87.6 (1)	$\mathrm{B} 2-\mathrm{O} 2-\mathrm{N} 2$	115.6 (3)
$\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 1$	178.8 (1)	$\mathrm{B} 1-\mathrm{O} 3-\mathrm{N} 4$	117.5 (3)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{Cl}$	89.0 (1)	$\mathrm{B} 1-\mathrm{O} 4-\mathrm{N} 1$	$117 \cdot 5$ (3)
N3-Co-N1	81.4 (1)	$\mathrm{O} 4-\mathrm{B} 1-\mathrm{O} 3$	$113 \cdot 5$ (4)
$\mathrm{N} 3-\mathrm{Co}-\mathrm{N} 2$	$98 \cdot 6$ (1)	$\mathrm{F} 1-\mathrm{Bl}-\mathrm{O} 3$	$104 \cdot 2$ (4)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{Cl}$	91.5 (1)	$\mathrm{Fl}-\mathrm{Bl}-\mathrm{O} 4$	105.9 (4)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 1$	98.0 (1)	F2-B1-O3	109.6 (4)
$\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 2$	81.9 (1)	F2-B1-O4	$110 \cdot 2$ (4)
N4-Co-N3	179.3 (2)	F2-B1-F1	113.4 (4)
$\mathrm{N} 5-\mathrm{Co}-\mathrm{Cl}$	178.0 (1)	$\mathrm{O} 2-\mathrm{B} 2-\mathrm{O} 1$	113.7 (4)
$\mathrm{N} 5-\mathrm{Co}-\mathrm{N} 1$	88.0 (2)	F3-B2-O1	$110 \cdot 1$ (4)
$\mathrm{N} 5-\mathrm{Co}-\mathrm{N} 2$	90.8 (1)	F3-B2-O2	$110 \cdot 8$ (4)
$\mathrm{N} 5-\mathrm{Co}-\mathrm{N} 3$	90.0 (1)	F4-B2-O1	$104 \cdot 0$ (4)
$\mathrm{N} 5-\mathrm{Co}-\mathrm{N} 4$	89.5 (1)	$\mathrm{F} 4-\mathrm{B} 2-\mathrm{O} 2$	$105 \cdot 1$ (4)
$\mathrm{O} 4-\mathrm{Nl}-\mathrm{Co}$	$123 \cdot 1$ (2)	F4-B2-F3	112.9 (4)
C7-N1-Co	115.9 (3)	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 4$	123.9 (4)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{O} 4$	119.6 (3)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 4$	$112 \cdot 8$ (4)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{Co}$	123.4 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	123.3 (4)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co}$	116.5 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	112.7 (4)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 2$	119.7 (3)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$	124.4 (4)
$\mathrm{Ol}-\mathrm{N} 3-\mathrm{Co}$	122.4 (2)	C4-C3-C2	$122 \cdot 9$ (4)
C6-N3-Co	117.0 (3)	C5-C6-N3	$125 \cdot 1$ (4)
C6-N3-O1	120.4 (3)	C7-C6-N3	$112 \cdot 5$ (3)
$\mathrm{O} 3-\mathrm{N} 4-\mathrm{Co}$	$123 \cdot 5$ (3)	C7-C6-C5	122.4 (4)
$\mathrm{C} 2-\mathrm{N} 4-\mathrm{Co}$	116.0 (3)	C6-C7-N1	112.9 (3)
$\mathrm{C} 2-\mathrm{N} 4-\mathrm{O} 3$	119.7 (3)	C8-C7-N1	124-1 (4)
$\mathrm{C} 9-\mathrm{N} 5-\mathrm{Co}$	$170 \cdot 9$ (3)	C8-C7-C6	$122 \cdot 9$ (4)
C10-C9-N5	178.8 (5)		

were corrected for Lorentz, polarization and absorption effects (by the Gaussian method); minimum and maximum transmission factors were 0.86 and 0.91 . Crystal dimensions were $0.18 \times 0.31 \times 0.45 \mathrm{~mm}$. Systematic reflection conditions: $h 00, h=2 n ; 0 k 0, k$ $=2 n ; 00 l, l=2 n$ indicate space group $P 2_{1} 2_{1} 2_{1}$. The Co atom was located by Patterson methods and the light atoms were then found on successive Fourier syntheses. Anisotropic temperature factors were used for all non-H atoms. Methyl atoms were given fixed isotropic temperature factors, $U=0.07 \AA^{2}$, and were treated as rigid CH_{3} units, with their initial orientation taken from the strongest H -atom peaks on a difference Fourier synthesis. The absolute structure of the individual crystal chosen was not determined. Final refinement was on F by least-squares methods refining parameters. Largest positive and negative peaks on a final difference Fourier synthesis were of height $\pm 0.4 \mathrm{e} \AA^{-3}$. A weighting scheme of the form $w=1 /\left[\sigma^{2}(F)\right]$ was used and shown to be satisfactory
by a weight analysis. Final $R=0.031, w R=0.036$. Maximum shift/e.s.d. in final cycle $0 \cdot 03$. Computing with SHELX76 (Sheldrick, 1976). Scattering factors in the analytical form and anomalous-dispersion factors taken from International Tables for X-ray Crystallography (1974, Vol. IV). Final atomic coordinates are given in Table 1, and bond lengths and angles in Table 2.* Views of the molecule are shown in Fig. 1.

Discussion. The complex is seen to contain octahedrally coordinated $\mathrm{Co}^{\text {III }}$, with axial Cl^{-}and MeCN ligands. Apart from these ligands, the molecule is planar, with the BF_{2} groups disposed above and below the plane. For application of similar molecules in oxygen binding, the planarity is advantageous in that oxidizable organic fragments are removed from the oxygen coordination site; however, it has been found that protection, both of this coordination site and of the trans-position occupied by the axial base, is important for stability in oxygen adducts.

A number of $\mathrm{Co}^{\text {III }}$ glyoxime complexes have previously been examined structurally, most of which

[^1]contain neutral axial donors $\left(\mathrm{NH}_{3}\right.$, pyridine, pyrrolidine, etc.). For comparison with the present structure, the trans-azido pyridine complex is the most appropriate (Clearfield, Gopal, Kline, Sipski \& Urban, 1978; Ponnuswamy \& Trotter, 1983), as it contains one anionic and one neutral ligand. The two molecules have closely similar dimensions, though the $\mathrm{Co}-\mathrm{N}$ distance is slightly shorter in the present example [mean $1.885(3) \AA$, compared to 1.903 (4) \AA]; the distance to N of the acetonitrile ligand is hardly longer [1.898 (3) \AA]. The CoN (pyridine) distance in the pyridine complex is significantly longer $[1.973(5) \AA]$, perhaps reflecting the trans-influence of the N_{3} ligand. The displacement of the B atoms from the coordination plane has allowed the non-bonded $\mathrm{O} \cdots \mathrm{O}$ distances $[2 \cdot 500(4) \AA]$ to remain almost identical to the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distances in the trans-azido pyridine complex [2.483(6); $2 \cdot 500$ (6) \AA].

References

Clearfield, A., Gopal, R., Kline, R. J., Sipski, M. L. \& Urban, L. O. (1978). J. Coord. Chem. 8, 5-13.
lance, K. A., Goldsby, K. A. \& Busch, D. H. (1991). Inorg. Chem. In the press.
Ponnuswamy, M. \& Trotter, J. (1983). Acta Cryst. C39, 726-728.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Di(hexahydropyridazido)thiophosphorsäure- O-phenylester als zweizähniger $\boldsymbol{S}, \boldsymbol{N}$-Ligand in einem dimeren Cadmium(II)-Komplex

Von Christine Renz-Kreikebohm, Brigitte Stromburg und Udo Engelhardt
Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstr. 34-36, D-1000 Berlin 33, Deutschland

(Eingegangen am 16. Juli 1990; angenommen am 2. Januar 1991)

Abstract

Di- μ-chloro-bis\{chloro[O-phenyl di(hexa-hydropyridazido)thiophosphate- $S, N]$ cadmium(II) $\}$, $\left[\mathrm{Cd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{OPS}\right)_{2}\right], M_{r}=1019 \cdot 42$, triclinic, $P \overline{1}$, $a=9 \cdot 150$ (3),$\quad b=10.356$ (4), $c=11.506$ (6) $\AA, ~ \alpha=$ 87.24 (3) $, \quad \beta=86.12(4), \quad \gamma=67.94(3)^{\circ}, \quad V=$ 1008 (2) $\AA^{3}, Z=1, D_{x}=1.679 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Мo $K \alpha)$ $=0.71069 \AA, \mu=15.36 \mathrm{~mm}^{-1}, \quad F(000)=512, \quad T=$ $293 \mathrm{~K}, R=0.037$ for 3343 unique contributing reflections. The complex has been prepared in an ethanolic solution by the reaction of bis(hexahydropyridazido)thiophosphoric acid O-phenyl ester and $\mathrm{CdCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in a $1: 1$ molar ratio. The asymmetric unit is formed by one half of the centrosymmetric dimer.

0108-2701/91/071403-04\$03.00

The bidentate ligands coordinate through S and one of the terminal pyridazido N atoms. Cd is at the centre of a tetragonal pyramid formed by N, S, one terminal Cl and two Cl bridges to the other Cd . Bond distances: Cd-S 2.661 (1), Cd-N 2.397 (5), $\mathrm{Cd}-\mathrm{Cl}$ (terminal) $2.387(2), \quad \mathrm{Cd}-\mathrm{Cl}$ (bridge) 2.565 (2) and 2.644 (2), $\mathrm{P}-\mathrm{S} 1.960(2), \mathrm{P}-\mathrm{N}$ $1.650(5)$ and $1.643(4), \mathrm{N}-\mathrm{N} \quad 1.437(6)$ and 1.433 (6) Å.

Einleitung. Dihydrazidothiophosphorsäure-Derivate sollten potentiell als dreizähnige Chelatliganden fungieren können (Engelhardt \& Scherer, 1976; © 1991 International Union of Crystallography

[^0]: * Authors to correspondence should be addressed.

[^1]: * Lists of anisotropic thermal parameters, H -atom coordinates and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53911 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

